26. A 'H-NMR Spectroscopic Investigation of the Conformation of the Acetamido Group in Some Derivatives of N-Acetyl-D-allosamine and -D-glucosamine

by **Paul Fowler, Bruno Bernet,** and **Andrea Vasella***

Laboratorium fur Organische Chemie, ETH-Zentrum, Universitatstrasse **16,** CH-8092 Zurich

(21. **XI.** 95)

The population of the conformations obtained by rotation around the $C(2)-N$ and the N-C(O) bonds of AIINAc, GlcNAc, and GlcNMeAc derivatives was investigated by 'H-NMR spectroscopy. The AIINAc-derived α -D- and β -D-pyranosides 4–7, the AllNAc diazirine 16, and the GlcNAc-derived axial anomers α -D-8–10 prefer the (Z) -anti-conformation. A significant population of the (Z) -syn-conformer in the (Z) -syn/ (Z) -anti-equilibrium for the equatorial anomers β **-0-8-10** and the GlcNAc diazirine 17 was evidenced by an upfield shift of H–C(2), downfield shifts of H-C(1) and H-C(3), and by NOE measurements. The population of the (Z) -syn-conformation depends on the substituent at C(l) and is highest for the hexafluoroisopropyl glycoside. The population of the (Z) -syn-conformation of β -D-14 decreases with increasing polarity of the solvent, but a substantial population is (Z)-syn-conformation of β -D-14 decreases with increasing polarity of the solvent, but a substantial population is
still observed for solutions in D₂O. Whereas the α -D-anomers of the hemiacetal 22 and the methyl gl and (Z) -syn-conformers. The diazirine **17** self-associates in CD₂Cl₂ solution at concentrations above 0.005 μ at low temperatures. The axial anomers of the GlcNMeAc derivatives α -D-26-28 are 2:1 to 3:1 mixtures of (Z)-anti- and (E)-anti-conformers, whereas the CorrespondingB -D-glycosides are *cu.* **1** :3 *:6* mixtures of (Z)-syn-, *(Z)-anti-,* and (E)-anti-conformers.

Introduction. – We have described an unprecedented neighboring-group participation of the acetamido group in the glycosidation of alcohols by the diazirines **16** and **17** derived from 2-acetamido-2-deoxyhexoses, leading preferentially to α -D-glycosides [1]. We rationalized this selectivity on the basis of a *bona fide* H-bond from the appropriately oriented acetamido group of the reactive intermediates to the glycosyl acceptor. This raises the question about the conformation of the NHAc $-C(2)$ group, which is of evident importance considering the prominent biological role of N-acetylglucosamine and its glycosides. There is evidence that the conformational behavior of the $NHAc-C(2)$ group depends upon the constitution and configuration of the saccharide. The extent of the dependence of the chemical shift of the $H-N$ group on the temperature is a criterium for inter- *vs.* intramolecular H-bonds. It is linear and in agreement with an intramolecular H-bond for solutions in CD,C12 of the N-acetylallosamine-derived diazirine **16,** but nonlinear for the N-acetylglucosamine analogue **17** [l]; it is also linear and in agreement with an intramolecular H-bond for the hexafluoroisopropyl N-acetyl-allosamine α -D-6 and for the hexafluoroisopropyl N-acetylglucosamine α -D-9, but again curved for the anomer β -D-9.

As a rule, the NMR spectra of secondary acetamides (RR'CH-NHAc) show the presence of a single conformer. The rather large vicinal $J(C-H,N-H)$ value [2] is compatible with either the antiperiplanar or the synperiplanar arrangement of the C-H

Fig. 1. The equilibria obtained by rotation around $C(H) - N$ and $N-C(O)$ bonds of acetamides $(R = H \text{ or } Me)$

and the N-H bond'). The four conformers depicted in *Fig. I* and the equilibria between them have to be evaluated. The (E) -conformers are less stable than the (Z) -conformers due to the unfavorable *cis*-interaction of the $CH₃$ and the RR'CH groups. Indeed, there are no examples for (E)-configurated acetamides in the Cambridge *Data Base.* The dominant part of the entries *(ca.* 250) show the (Z)-anti-conformation. Both the *(2) anti*- and (Z) -syn-conformers are present in a clathrate of N-acetylmethionine ethyl ester 1141. The L-arabinonolactone **1** is the only acetamide which crystallizes exclusively as the (Z) -syn -conformer [15].

The configuration and conformation of sugar amides and thioamides in solution has recently been reviewed [16]. Whereas formamides and N , N -disubstituted acetamides are

¹) According to the *Karplus* equation of *Bystrov* [3], $J(H-\text{C,N}-H)$ is 10.9 Hz for the antiperiplanar *(anti;* $\phi = 180^\circ$ and 8.7 Hz for the synperiplanar (syn; $\phi = 0^\circ$) arrangement of H-C and H-N. *Hirano* [4] favored the antiperiplanar conformation due to weaker steric interactions. In the following, the antiperiplanar arrangement is assigned on the basis of 'large' $J(C-H,N-H)$ values [5-13]. The assignment of the (Z) -anticonformation (cf. Fig. I) for protected β -D-GlcNAc derivatives [7] [12] [13] may be wrong.

mixtures of (Z) -anti- and (E) -anti-conformers, 2 and the few examples of β -D-glucopyranosylacetamides mentioned in [16] occur only as (Z) -anti-conformers above 200 K, as deduced from the similarity of their $H-MMR$ spectra with those of (Z) -anti-formamides [16]. However, *Vliegenthart* and coworkers [17] claimed to have detected the (Z) -syn-conformers of the β -D-GlcNAc derivative 3 and of its β -D-GalNAc analogue in acetone solution at $T < 235$ K. Also, a weak long-range coupling between the formyl H and H-C(4) of a **4-deoxy-4-formamido-mannopyranoside** (W-arrangement) has been explained by the population of the (Z) -syn-conformation [18]. Recently, however, it has been shown that such long-range couplings occur both in *(Z)-anti-* and (E)-anti-formamides, and probably have to be interpreted as pseudoallylic couplings, considering the partial double-bond character of the $N-C(O)$ bond [19].

The rotamer equilibria related to the $C(H)$ -N bond of acetamides may be influenced by the substituents at neighboring C-atoms. Therefore, we investigated the conformation of NHAc-C(2) in α -D- and β -D-GlcNAc and α -D- and β -D-AllNAc derivatives, embodying the four fundamental types of diastereoisomers possessing an equatorial NHAc group.

Results and Discussion. - 1. Molecular-Mechanics Calculations. Methyl 2-acetamido-2-deoxy-3,4,6-tri-O-methyl- α/β -D-allopyranosides and $-\alpha/\beta$ -D-glucopyranosides $(\alpha/\beta$ -D-**14)** were used for molecular-mechanics calculations (Macromodel V. 4.5 [20], MM3* force field, gas phase). The energy of the conformers obtained by stepwise (20°) rotation around the $C(2)-N$ bond was calculated. Maxima occur when the $C=O$ group has close contact to a Me0 group. The destabilization is due to unfavorable steric and dipoledipole interactions that are stronger for equatorial than for axial Me0 groups'). The conformers exhibiting the largest distances between the C=O and both Me0 groups are global minima. The (Z) -anti-conformers of the O-methylated α -D-allo-, β -D-allo-, and α -D-glucopyranosides (dihedral angle H-C(2)-N-H of \pm 150, -135, and +135°, resp.) are 8.0, 2.7, and 2.8 kcal/mol more stable than the corresponding (Z) -syn-conformers (dihedral angle H-C(2)-N-H of *ca.* $\pm 10^{\circ}$). The (Z)-anti-conformer of the O-methylated β -D-glucopyranoside, however, is destabilized by two equatorial MeO groups, and the (Z) -syn-conformer is 4.0 kcal/mol more stable³). Calculation shows also that the (E)-anti-conformers may be neglected in the rotamer equilibrium, being always *ca.* 4 kcal/mol higher in energy than the (Z) -anti-conformers.

2. Analysis of the ^{*'H-NMR Spectra of Protected 2-Acetamido-2-deoxy-D-allo- and*} -D-glucopyranosides. The chemical-shift difference for the signals of H-C geminal to the N-substituent is characteristic for the conformations of sugar thioformamides and formamides [16]. H-C of the (Z)-anti-conformer (1,5-interaction of H-C and X=C = 1,3diaxial-type interaction) is deshielded by *ca.* $0.8-1.6$ ppm relative to H-C of the (E) -anticonformer (1,5-interaction of H–C and H–C(X)), *i.e.* this deshielding is due to the proximity of the X=C group *(cf.* [21]). **A** similar chemical-shift difference is expected for the corresponding H-C signal of the (Z) -anti- and the (Z) -syn-conformers (synperipla-

 2 Compare with similar barriers in N-phthaloylallosamine derivatives [21].

^{3&}lt;sub>)</sub> The (Z) -syn-conformer of β -D-GIcNAc derivatives is the most stable conformer according to empirical energy [22] and PCILO semi-empirical quantum chemical calculations [23]. Other semi-empirical quantum calculations, however, favor the (Z)-anti-conformer (MNDO: H-N antiperiplanar to H-C(2); CNDO, INDO, and PCILO: $H-N$ synperiplanar to $C(1)-C(2)$ [24]).

nar arrangement of $H-C$ and $H-N$)⁴). The chemical shift of the $H-C$ vicinal to the N -substituent (corresponding to $H-C(1)$ and $H-C(3)$ of 2-(acylamino)-2-deoxyhexoses) is not influenced by the $(E)/(Z)$ -equilibrium *(cf.* [16]). The *anti/syn*-equilibrium, however, should affect the chemical shifts of the vicinal H-C, and one expects that a **(Z)-anti/(Z)-syn-equilibrium** of AllNAc and GlcNAc derivatives is reflected by the chemical-shift values of H--C(2), H-C(1), and H--C(3).

 $H-C(2)$ of the β -p-anomer of the alkyl 2-acetamido-2-deoxy-allopyranosides **4-6** [1] [29] resonates by *ca.* 0.1 ppm at higher field than $H-C(2)$ of the corresponding α -Danomer (solutions in CDCl₁; *Table 1*). H-C(2) of both anomers of the aryl 2-acetamido-2-deoxy-allopyranoside 7 [1] appears at the same position. Similar $\Delta\delta$ values⁵) as for

⁴) The chemical-shift values for H-C of a pure (Z)-syn-acetamide is not known. H-C(1) of 2-azabicyclo- $[2.2.2]$ octan-3-one resonates at 3.65 ppm $[25]$ and is synperiplanar to H-N (dihedral angle H-C(1)-N-H of 0°), but some deshielding may be due to its bridgehead position. The axial H-C(2) of pyranosides derived from 2-amino-2-deoxyallose [26] and -glucose [27] [28] resonates at 2.7-3 ppm.

A6 values are taken as the difference of the chemical-shift values $\delta(\beta - \text{D-anomer}) - \delta(\alpha - \text{D-anomer})$ *(Chapt. 2*) and 4, Tables 1-3 and 5) or δ (diazirine) - δ (corresponding methyl α -D-pyranoside) *(Chapt. 3, Table 4).* 5)

e

 $H-C(2)$ of 4, 5, and 7 are observed for $H-C(2)$ of the corresponding glucopyranosides **11, 12, and 13** [30] [31], respectively. The chemical-shift values for $H-C(2)$ of $4-7$ are similar to those of a (Z) -anti-formamide (4.34 ppm [16]). Thus, both anomers of these AllNAc glycosides prefer the (Z) -anti-conformation. The chemical shift for $H-C(3)$ and H-C(4) of **47** depends only weakly on the anomeric configuration.

H-C(2) of the α -D-anomers of the GlcNAc derivatives **8-10** [1] [29] resonates in the narrow range of 4.26–4.37 ppm, indicating again the predominance of the (Z) -anti-conformation. H-C(2) of the β -D-anomers of **8**-10, however, resonates significantly at higher field $(\Delta \delta$ values of 0.81, 1.02, and *ca.* 0.5 ppm, resp.). H-C(1) of the α - and β -D-anomers of **8–10** resonates at the same position $(|\Delta \delta| \le 0.12$ ppm). The H–C(3) signals of the β -D-anomers of **8-10** are shifted *downfield* by 0.24-0.64 ppm relative to those of the α -D-anomers. These $\Delta\delta$ values are significant, as evidenced by a comparison with the $\Delta\delta$ values for H-C(1) and H-C(3) of the anomers of the corresponding 2-*O*-benzyl-glucopyranosides 11–13; here, the H–C(1) and H–C(3) signals of the β -Danomers are shifted *upfield* by 0.3-0.5 ppm.

The $\Delta\Delta\delta$ values for H-C(1), H-C(2), and H-C(3) ($\Delta\delta$ values⁵) of the GlcNAc-glycosides $-\Delta\delta$ values of the glucosides) indicate a deviation of the experimental values from those expected for the (Z) -anti-conformers of the β -D-configurated 2-acetamido-2-deoxy-glucopyranosides. The $\Delta\Delta\delta$ values (CDCl, solution) express a *downfield* shift for **13**: $+0.22$ ppm) and $H-C(3)$ (α/β -D-8 vs. α/β -D-11: *ca.* $+0.70$; α/β -D-9 vs. α/β -D-12: $ca. +0.98$; α/β **-D-10** vs. α/β **-D-13**: $ca. +0.64$ ppm) and an *upfield* shift for H-C(2) $(\alpha/\beta$ **-D-8** and reveal an equilibrium between the (Z) -syn- and (Z) -anti-conformers for 2-acetamido-2-deoxy- β -D-glucopyranosides. The preference for the (Z) -syn-conformers decreases from the hexafluoroisopropyl glycoside β -D-9 to the methyl glycoside β -D-8 and the 4-nitrophenyl glycoside β -D-10. This equilibrium is also evident from the smaller $J(2,$ NH) values for the β -D-conformers of the GlcNAc derivatives (Table 1) in agreement with the *Karplus* equation of *Bystrov* [3]. H-C(1) (α/β-D-8 *vs.* α/β-D-11: +0.34; α/β-D-9 *vs.* α/β-D-12: +0.55; α/β-D-10 *vs.* α/β-D v_s . α/β -D-11: -0.69 ; α/β -D-9 *vs.* α/β -D-12: -0.91 ; α/β -D-10 *vs.* α/β -D-13: *ca.* -0.52 ppm)

Also for solutions in CD₂Cl₂, the chemical-shift values of β - β - β and β - β - β indicate the equilibrium between the (Z) -syn- and (Z) -anti-conformers (Table 2). The smaller $\Delta\Delta\delta$ H-C(3) $(\alpha/\beta - D-8 \text{ vs. } \alpha/\beta - D-11$: *ca.* $+0.42$; $\alpha/\beta - D-9 \text{ vs. } \alpha/\beta - D-11$: *ca.* $+0.74$ ppm), and H-C(2) (α/β-D-8 *vs.* α/β-D-11: −0.41; α/β-D-9 *vs.* α/β-D-11: −0.67 ppm) indicate the same relative, but weaker preference for the (Z) -syn-conformers as it was observed for the solutions in CDCl₁. The $\Delta\delta$ values for the anomeric methylated methyl glycosides 14 [32] [33] and **15** [34] *[35]* are very similar to those for the corresponding benzylated methyl glycosides **8** and **11** (except for $H - C(1)$ of the fucosides), respectively. This evidences that the Ph groups have no influence upon the position of the equilibrium of conformers relative to the $C(2)-N$ bond of benzylated GlcNAc derivatives. values for H-C(1) $(\alpha/\beta - D - 8)$ *vs.* $\alpha/\beta - D - 11$: $+0.27$; $\alpha/\beta - D - 9$ *vs.* $\alpha/\beta - D - 11$: $+0.37$ ppm),

The conformer equilibria of the GlcNAc glycosides α -D-8, β -D-8, α -D-14, β -D-14, and β -D-9 were further evidenced by NOE experiments. Irradiation of H-N of α -D-8 in CD₂CI₂ led to NOE's for H-C(1) and H-C(3) in agreement with the *anti*-conformation *(Fig.2.a).* The enhancement at $H-C(2)$ (2%) may indicate a weak population of the syn-conformer or a through-bond coupling. Irradiation of $H-N$ of β -D-8 gave NOE's for H-C(2) (7%) indicating a syn-conformation. Weaker NOE's for H-C(3) (5%) and

Fig. 2. *NOE dutu.* a) Irradiation at H-N of α -D-8; *b*) irradiation at H-N of β -D-8; *c*) irradiation at H-N and H-C(2) of β -D-9; *d*) irradiation at H-N of β -D-14; *e*) irradiation at H-N of β -D-21; *f*) irradiation at H-N and at H-C(2) of **17.**

H-C(1) (3%) indicate a lower population of the anti-conformation *(Fig. 2,b).* Similar NOE's as for α -D-S and β -D-S were observed upon irradiation of H-N of α -D-14 and β -D-14 (CD₂Cl₂; not shown in *Fig. 2*). They reveal the same rotamer equilibria in CD₂Cl₂ solutions for the benzylated and the methylated glycosides. Irradiation of $H-N$ of β -D-9 (CDCl₃) gave an even stronger NOE for H-C(2) (12%) and weaker NOE's for H-C(3) and $H-C(1)$ (2% each), further evidencing the higher population of the syn-conformer of the hexafluoroisopropyl glycoside *(Fig. 2,* c). In addition, strong NOE's between N-H and the Me group of α -D-8, β -D-8, α -D-14, β -D-14, and β -D-9 confirm the population of the (Z)-conformers of the α -D- and β -D-anomers which has been so far only assumed on the basis of the calculations. Low-temperature experiments for β -D-8 in CD₂Cl₂ show some line broadening at 200-183 K that is presumably not only due to the increased viscosity, but also to a beginning coalescence, as the spectrum of **17** shows much less line broadening under analogous conditions. Unfortunately, the higher viscosity of a 1 : ¹ mixture $CD_2Cl_2/CFCl_3$ did not allow to record well resolved spectra at temperatures below 200 K.

The solvent dependence of the rotamer *synlanti*-equilibrium of the permethylated acetamides α -D- and β -D-14 was then investigated. These glycosides are soluble in a wide range of solvents including H,O. The population of the (Z) -syn-conformer decreases with increasing polarity of the solvent [36], as shown by the difference of the chemical-shift values ($\Delta\delta$) for H-C(1), H-C(2), and H-C(3) of the corresponding pairs of anomers (*Table 3*); it is highest in C_6D_6 ($d\delta$ -1.23 for H-C(2), +0.18 for H-C(1), and +0.42 ppm for $H-C(3)$). The effect of solvent polarity soon levels off and the $\Delta\delta$ values for the spectra

Solvent		$H-C(1)$	$H-C(2)$	$H - C(3)$	$H-N$	$J(2,\text{NH})$	
C_6D_6	α -D-14	4.58	4.53	3.45	5.19	8.3	
	β -D-14	$4.76(+0.18)$	$3.30(-1.23)$	$3.87 (+0.42)$	4.81	6.9	
CDCl ₃	α -D-14	4.66	4.19	3.31	5.59	8.9	
	β -D-14	$4.75(+0.09)$	$3.24(-0.95)$	$3.80 (+0.49)$	5.75	7.7	
CD,Cl	α -D-14	4.56	4.05	3.29	5.64	8.9	
	β -D-14	$4,45(-0.11)$	$3.43(-0.62)$	$3.47 (+0.18)$	5.63	6.7	
(D_6) acetone	α -D-14	4.52	3.98	3.33	7.03	9.2	
	β -D-14	$4.39(-0.13)$	$3.63 - 3.51$ (ca. -0.41)	$3.43 (+0.10)$	7.14	7.3	
CD ₃ CN	α -D-14	4.51	3.88	3.26	6.44	9.4	
	β -D-14	$4.22(-0.29)$	$3.61 - 3.50$ (ca. -0.33)	$3.21(-0.05)$	6.39	8.7	
(D_6) DMSO	α -D-14	4.47	3.77	3.32	8.00	8.8	
	β -D-14	$4.21(-0.26)$	$3.55 - 3.44$ (ca. -0.28)	$3.25(-0.07)$	7.87	9.0	
CD ₃ OD	α -D-14	4.55	3.95	3.41			
	β -D-14	$4.27(-0.28)$	$3.67 - 3.60$ (ca. -0.32)	$3.28(-0.13)$			
D ₂ O	α -D-14	4.68	3.96	3.55			
	β -D-14	$4.41(-0.27)$	$3.73(-0.23)$	$3.41(-0.14)$			

Table 3. Solvent Dependence of the Chemical-Shift Values $[ppm]$ for $H-C(1)$, $H-C(2)$, $H-C(3)$, and $H-N$ and the Coupling Constant $J(2,NH)$ [Hz] of α -D-14 and β -D-14. In parentheses $\Delta\delta$ values⁵).

in CD_1CN , $(D_6)DMSO$, CD_1OD , and D_2O differ only slightly from each other, revealing a similar population of the conformers. The $\Delta\delta$ values for H-C(2) of 14 in polar solvents are still ca. -0.30 ppm. The $\Delta\delta$ values for H-C(1) *(ca.* -0.28 ppm) and H-C(3) *(ca.* -0.1 ppm) are distinctly smaller than expected. The experimental $\Delta\delta$ values for pairs of anomeric glucosides, *ca.* -0.6 ppm for H-C(1), *ca.* -0.1 ppm for H-C(2), and *ca.* -0.3 ppm for H $-C(3)$ are well known [37] and illustrated by 11 -13 . Thus, H $-C(1)$ and $H-C(3)$ of β -**D-14** are relatively deshielded, and $H-C(2)$ is relatively shielded. The influence of the AcNH group can only be rationalized by assuming a substantial population of the (Z) -syn-conformer also in polar solvents. In keeping with this, irradiation of H-N of β -D-14 in (D₆)DMSO solution led to NOE's of the same intensity (5%) for $H-C(1)$, $H-C(2)$, and $H-C(3)$ (*Fig. 2, d*).

3. Analysis *of* the *'H-NMR* Spectra *of* the 2- (Acetarnido)-2-deoxy- D-allosylidene- and -mglucosylidene-Derived Diazirines **16** and **17.** Glycosylidene-derived diazirines possess a pseudoaxial and a pseudoequatorial N-substituent at $C(1)$, so that the population of the conformers relative to the C(2)-N bond of **16** and **17** is mainly influenced by the orientation of $RO-C(3)$. The diazirine **16** crystallizes as the (Z) -anti-conformer. In the solid state, it possesses a dihedral angle $H-C(2)-N-H$ of 158.6° and an intermolecular H-bond between the H-N and the O=C group [38]. The chemical shift of H-C(2) and perhaps H-C(3) of **16** [39] and **17** [29] should allow to deduce the preferred conformation of the AcNH-C(2) group in solution (Table *4).* For this, one has to distinguish between the influence of the azi and of the acetamido groups in the $syn/anti$ -conformers. This can be done by comparing the chemical-shift values of $H-C(2)$ and $H-C(3)$ of the diazirine **18** [40] and the diazirines **16** and **17,** on the one hand, and those of the diazirines and the corresponding methyl glycosides 4, 8, and 11, on the other hand.

It is sufficient to compared the δ values for H-C(2) of the gluco-configurated diazirines with those of the corresponding methyl α -D-pyranosides since the $\Delta\delta$ values⁵) of the alkyl glucosides **11** and **12** are constant and small *(ca.* -0.1 ppm; Table *I).* The *A6*

	$H-C(2)$	$H-C(3)$	$H - C(4)$	$H - C(5)$	$H-N$	$J(2,\text{NH})$
16 [39]	$4.85 (+0.58)$	$4.16 (+0.11)$	$3.92 (+0.20)$	$4.46 (+0.13)$	5.21	9.2
17 [29]	$4.35 (+0.09)$	3.77 (ca. $+0.08$)	3.94	3.86	4.88	8.1
18[40]	$4.12 (+0.56)$	$3.99 (+0.11)$	3.89 (ca. $+0.25$)	$3.75 (+0.01)$	$\qquad \qquad =$	

Table 4. *Selected Chemical-Shift Values* [ppm] *and Coupling Constants* [Hz] *of the AllNAc and the GlcNAc Diazirines* **16–18** *in CDCl*₃ Solution. In parentheses $\Delta\delta$ values⁵).

values (value for the diazirine $-$ value for the corresponding methyl α -D-pyranoside) for H-C(2) of the glucose diazirine **18** and the GlcNAc diazirine **17** are 0.56 and 0.09 ppm, respectively *(Table 4)*. The former $\Delta\delta$ value reflects the combined influence of the azi group and the axial MeO group, and the latter $\Delta\delta$ value reflects the same combined influence and additionally the influence of NHAc in its accessible conformations. The assumption that the influence on the chemical shift of $H-C(2)$ of the azi and of the MeO groups is the same for the corresponding pairs of compounds leads to a shielding of 0.47 ppm for H-C(2) of **17** by the influence of the NHAc group. Hence, a substantial population of the (Z)-syn-conformation of **17** is present in CDCI, solution.

The analysis of the AllNAc diazirine **16** is hampered, as the corresponding allose diazirine (AcNH replaced by BnO) is not known. However, one can correlate the chemical-shift value for H-C(2) of **16** with that for H-C(2) of **18**. The comparison of the δ values for H-C(2) of 19 [41], 20 [42], and α -D-11 (3.45, 3.57, and 3.56 ppm; *Table 1*) shows that $H-C(2)$ of the glucosides is deshielded by *ca.* 0.1 ppm relative to $H-C(2)$ of the alloside and that the protecting groups of $HO-C(4)$ and $HO-C(6)$ have no influence upon the δ value of H-C(2) of the glucosides. Therefore, the $\Delta\delta$ values for H-C(2) (value for the diazirine – value for the corresponding methyl α -D-pyranoside) should be the same for **18** and the unknown allose diazirine analogue of **16** (0.56 ppm). The corresponding $\Delta\delta$ value for 16 is 0.58 ppm. Thus, one has to conclude that the NHAc group of the AllNAc diazirine 16 and of the corresponding glycoside α -D-4 have a strong and similar preference for the (Z) -anti-conformation.

Is the population of the (Z) -syn-conformer higher in 17 or in the corresponding β -**D-8**? To answer this question, we compared the δ values for H-C(2) of α -**D-8** and the diazirine **17,** on the one hand, and of the anomeric glycosides **8,** on the other hand. The chemical-shift values for H-C(2) of α -D-8 and of the AllNAc analogue α -D-4 are very similar to each other, and the NHAc group of both glycosides adopts almost exclusively the (Z)-anti-conformation (see above). The expected δ value for H-C(2) of 17 in the (Z)-anti-conformation is given by $\delta(H-C(2))$ for α -D-8 and the contribution of the azi and the axial MeO groups (4.26 + 0.56 = 4.82 ppm). The expected δ value for H–C(2) of β **-D-8** in the (Z)-anti-conformation is given by $\delta(H-C(2))$ for α -D-8, taking into account $\Delta\delta$ (H-C(2)) for the formal anomerization, as derived from the chemical-shift values for the anomers of 11 $(4.26 - 0.1 = 4.16$ ppm). The difference between the expected and the observed values is 0.47 ppm for 17 and 0.71 ppm for β -D-8; hence, the population of the (Z) -syn -conformer is higher in β -**D-8** than in the diazirine 17. The signals of H-C(3) were not taken into account for this conformational analysis, as the δ values responded only weakly to structural changes.

The (Z) -syn/ (Z) -anti-equilibrium of 17 was corroborated by NOE measurements at 10" in CDC1, solution *(Fig.2,f).* Upon irradiation of H-N, enhancements of similar intensities were observed for the signals of $H-C(2)$, $H-C(3)$, and the Me group, evidencing the larger contribution of the (Z) -anti-conformer in 17 than in β -D-8. No trace of coalescence could be observed for 17 in CD₂Cl₂ solution in the temperature range from 283 to 183 K.

Is the temperature dependence of the (Z) -syn/ (Z) -anti-equilibrium responsible for the nonlinear temperature dependence of the δ values for H-N of 17? To answer this question, we measured 'H-NMR spectra of 17 in CD₂Cl₂ at different concentrations and temperatures between 193 and 293 K. On the one hand, the temperature dependence of the (Z) -syn/ (Z) -anti-equilibrium should lead to opposite chemical-shift changes for $H-C(2)$ and $H-C(3)$. On the other hand, the concentration dependence of $H-N$ should reveal di- or oligomerization of 17 at low temperature. Indeed, the δ value for H-N of a 0.005_M solution of 17 in CD₂Cl₂ solution shows a strong, linear dependence upon the

Fig. 3. *Temperature and concentration dependence of the chemical shift of a)* $H - N$ *and b)* $H - C(2)$ of 17 *in CD₂Cl₂ solution*

temperature *(Fig. 3, a)*. The $\delta\Delta/\delta T$ value of +6 pp b/K evidences that H-N is not involved in an intramolecular H-bond⁶). With increasing concentration, the temperature dependence deviates more strongly from linearity. This is strong evidence for self-association of **17** at lower temperatures and at higher concentrations. The observed deshielding of H-N with increasing concentration is in agreement with H-N acting as a donor in a $N-H\cdots$ O=C H-bond. $H-C(2)$ of 17 shows only a weak, linear dependence upon the temperature *(Fig. 3b)*. The $|\delta A/\delta T|$ value increases slightly from a 0.005 μ to a 0.08 μ solution (from -0.8 to -1.4 ppb/K, *Fig.3,b*). The determination of the temperature dependence of $H-C(3)$ is impeded by overlapping signal. Nevertheless, an increased

⁶) Positive $\delta \Delta/\delta T$ values for H-N of peptides in poorly H-bonding (chlorinated) solvents indicate, as a rule, completely buried H-N groups that are not involved in H-bondings [43]; small negative $\delta A/\delta T$ values indicate intramolecularly H-bonded $H-N$ groups [43-45].

shielding was observed upon lowering the temperature $(\delta A/\delta T \approx +1$ ppb for 0.005-0.08 μ solutions). As expected, $H - C(4)$ resonates at the same position for this temperature and concentration range $(\delta \Delta / \delta T = 0$ ppb). The $\Delta \delta$ values for H-C(2) and H-C(3) show opposite signs, but the absolute value are so small that the shift differences may be due to the self-association of 17 (both $H-C(2)$ and $H-C(3)$ are in the neighborhood of the AcNH group). Thus, the position of the (Z) -syn/ (Z) -anti-equilibrium of 17 is (nearly) constant in the temperature range from 190 to 300 K.

The rationalization according to which the intermolecular H-bond $N(Ac)-H \cdots O(H)-R$ is responsible for the preferred α -D-selectivity in the glycosidation of the GlcNAc diazirine 17 [1] is compatible with the (Z) -syn/ (Z) -anti-equilibrium. Such an H-bond of the (Z) -syn-conformer of 17 locates the ROH group far away from C(1). As a consequence, neither the α -D- nor the β -D-glycosides can be formed directly from this complex. In the (Z) -anti-conformer of 17, however, such an H-bond locates the ROH group below the pyranose ring in a position that is favorable for the formation of the *a* -D-glycoside.

4. Analysis *of* the *'H-NMR* Spectra *of* Unprotected 2-Acetamido-2-deoxy- D-glucopyranose, Its Methyl Glycosides, and Related Pseudosaccharides in *D,O* Solution. High-resolution 'H-NMR spectra of GlcNAc (22), glucose (24), and their methyl pyranosides 21 and 23 in D₂O solution were measured by *Perkins et al.* [46] (*Table 5*). Similar $\Delta\delta$ values⁵) were

	$H - C(1)$	$H - C(2)$	$H - C(3)$	$H-C(4)$
α -D-21 [46]	4.75	3.90	3.70	3.47
α -D-22 [46]	5.19	3.86	3.75	3.48
α -D-25 [47]	4.08	3.70	3.63	3.37
β -D-21 [46]	$4.44(-0.31)$	$3.68(-0.22)$	$3.52(-0.18)$	$3.43(-0.04)$
β -D-22 [46]	$4.70(-0.49)$	$3.66(-0.20)$	$3.52(-0.23)$	$3.44(-0.04)$
β -D-25 [47]	$3.60(-0.48)$	$3.63(-0.07)$	$3.31(-0.32)$	$3.38 (+0.01)$
α -D-21 ^a)	4.52	$3.69 - 3.61$	$3.50 - 3.42$	3.11
β -D-21 ^a)	$4.17(-0.35)$	$3.45 - 3.35$ (ca. -0.25)	$3.30 - 3.20$ (ca. -0.21)	$3.11 - 3.03$ (ca. -0.04)
α -D-23 [46]	4.80	3.55	3.66	3.39
α -D-24 [46]	5.22	3.52	3.70	3.40
β -D-23 [46]	$4.37(-0.43)$	$3.25(-0.30)$	$3.48(-0.18)$	$3.37(-0.02)$
β -D-24 [46]	$4.63(-0.59)$	$3.23(-0.29)$	$3.47(-0.23)$	$3.39(-0.01)$
a)		In (D_6) DMSO. Data for H-N: α -D-21: 7.74 ($J = 8.1$); β -D-21: 7.67 ($J = 9.3$).		

Table 5. *Selected Chemical-Shift Values* [ppm] *ofthe GlcNAc Derivatives* **21** *and* **22,** *the Pseudoglucose 25, und the Glucose Derivatives* **23** *and* **24** *in D₂O Solution and of* **21** *in* (D_6) *DMSO Solution*. In parentheses $\Delta\delta$ values⁵).

observed for H-C(1), H-C(2), and H-C(3) of 21-24. This suggests a similar and presumably dominant population of the (Z) -anti-conformation of both anomers of 21 and 22 in water. The $\Delta\delta$ values for H-C(1), H-C(2), and H-C(3) of 21 for D₂O or (D,)DMSO solutions (Table *5)* differ only slightly from those of the permethylated analogue **14** in the same solvents (*Table 3*). A significant contribution of the (Z) -syn-conformer of β -D-14 was deduced in *Chapt. 2*. This indicates a similar contribution of the (Z)-syn-conformer of β -p-21 in D₂O or (D₆)DMSO solutions. In keeping with this, irradiation of H-N of β -D-21 in (D₆)DMSO solution led to similar NOE's as observed 280 **HELVETICA CHIMICA ACTA** ~ Vol. 79 (1996)

for β -D-14 (Fig. 2, *e* and *d*). Hence, a significant population of the (Z)-syn-conformer of β -D-21 is probable. The similarity of the $\Delta\delta$ values of 22 and the pseudosaccharides 25 [47] shows that the ring 0-atom has no influence upon the position of the equilibirum of these conformers.

5. Analysis of the *NMR Spectra of 2-[Acetyl(methyl)amino]-2-deoxy-D-glucopyranosides.* The conformational equilibrium of NAlkylAc and NAlkylBz derivatives of glycopyranosyl-acetamides and **2-amino-2-deoxy-hexopyranoses** has been investigated by *Avalos* et *al.* [16]. These authors observed equilibria between the (Z)-anti- and the (E)-anti-conformers (ratios of 3:2 to **4:l).** As expected, the H geminal to the N-substituent of the (Z)-anti-conformers resonates at lower field than the one of the *(E)-anti*conformers ($\Delta\delta > 0.8$ ppm). β -D-Glycosides derived from GlcNRAc have not been included in *Avalos'* investigation; these glycosides are, however, of interest in the context of our studies.

Calculations of the energy of the conformers obtained by stepwise (20°) rotation around C(2)-N of (E) - and (Z) - α -D-27 predict that the (Z) -*anti*- and the (E) -*anti*-con-

formers are most stable and possess the same energy. The (Z)-syn- and the *(E)-syn* -conformers are destabilized by 2.5 and 7.2 kcal/mol, respectively. For β -p-27, the (Z)-synconformer represents the global minimum; the (E)-anti-, the (Z)-anti-, and the *(E)-syn*conformers are destabilized by 1.1, 2.5, and 5.7 kcal/mol, respectively. The rotational barriers for the NMeAc derivatives are higher than those for the NHAc derivatives. A comparison of the calculated and the spectroscopic data of the corresponding acetamides

(see above) shows that the calculation overestimates the destabilization of the (Z) -anticonformer (due to 0,O-interaction of O=C and the neighboring alkoxy group) of the β -D-glucopyranosides⁷).

On the basis of these considerations, one expects an equilibrium between the (Z) anti- and the (E) -anti-conformers for the α -D-pyranosides of GlcNMeAc and an equilibrium between the (Z) -syn-, (Z) -anti-, and (E) -anti-conformers for the corresponding β -D-pyranosides. The chemical-shift values of H-C(1), H-C(2), and H-C(3) should allow the characterization of the conformers.

N-Methylation of α -D-8, β -D-8, α -D-14, and β -D-14 with MeI in DMSO under basic conditions [50] gave the N-methylacetamides α -D-26, β -D-26, α -D-27 [51], and β -D-27 [51–53], respectively. Catalytic transfer hydrogenation [54] of α -D-26 and β -D-26 led to the triols α -D-28 and β -D-28⁸), respectively.

The ¹H-NMR spectra of α - D -26 and α - D -27 in CD,Cl, solution and of α - D -28 in D,O solution show the signals of two conformers each in the ratio of 67: 33,70 :30, and *75* :25, respectively. H-C(2) of the major isomer resonates at low field (> 4.3 ppm; *Table 6)* as expected for (Z) -anti-conformers. H-C(2) of the minor isomers resonates by 0.57-0.96 ppm at higher field. The (E) -anti-conformation was assigned to the minor conformer, as the chemical-shift values of $H-C(1)$ and $H-C(3)$ of both conformers are very similar to each other $(\Delta \delta \leq 0.15$ ppm).

		Ratio	Solvent	$H-C(1)$	$H - C(2)$	$H - C(3)$	$H-C(4)$	MeN	AcN
α -D-26	(Z) -anti	67	CD,Cl	4.64	4.79	4.03	$3.80 - 3.69$	2.85	2.02
	(E) -anti	33		4.73	3.83	4.05	$3.80 - 3.69$	2.89	2.12
α -D-27 ^a)	(Z) -anti	70	CD ₂ Cl ₂	4.56	4.54	3.68	3.28	2.97	2.08
	(E) -anti	30		4.64	3.61	3.67	3.26	2.90	2.07
α -D-28	(Z) -anti	75	D ₂ O	4.74	4.39	4.08	3.50	3.08	2.16
	(E) -anti	25		4.89	3.82	4.02	3.52	2.94	2.17
β -D-26	(Z) -anti	30	CD,Cl,	4.21	$4.62 - 4.48$	$3.80 - 3.66$	$3.61 - 3.42$	2.29	1.92
	(E) -anti	60		4.35	$3.61 - 3.42$	$3.80 - 3.66$	$3.61 - 3.42$	2.62	2.08
	(Z) -syn	10		5.15	$3.61 - 3.42$	$3.80 - 3.66$	$3.61 - 3.42$	2.99	1.89
β -D-27	(Z) -anti	30	CD,CI,	4.21	4.44	$3.50 - 3.46$	$3.36 - 3.23$	2.84	2.03
	(E) -anti	60		4.29	$3.36 - 3.23$	$3.50 - 3.46$	$3.36 - 3.23$	2.76	2.03
	(Z) -syn	10		5.06	$3.36 - 3.23$	4.14	3.36–3.23	3.02	2.06
β -D-28	(Z) -anti	30	D ₂ O	4.52	4.41	$3.75 - 3.65$	$3.48 - 3.31$	2.98	2.13
	(E) -anti	60		4.59	$3.48 - 3.31$	$3.75 - 3.65$	$3.48 - 3.31$	2.86	2.12
	(Z) -svn	10		5.17	$3.48 - 3.31$	$3.75 - 3.65$	$3.48 - 3.31$	3.10	2.10

Table 6. Selected Chemical-Shift Values [ppm] of the GlcNMeAc Glycosides 26-28. The spectra of the α -D-anomers were recorded at room temperature, those of the β -D-anomers at -50° .

^a) The spectrum in CDCI₃ solution ((Z)-anti/(E)-anti 58:42) is similar to the published one [51], except that $H-C(2)$ of the (E) -anti-conformer resonates at high field between 3.68 and 3.38 ppm.

 $-$

⁷) For this reason, the calculated (Z)-anti-rotamers of the β -D-allopyranoside and the α -D-glucopyranoside possess no intramolecular H-bonds between H-N and the neighboring axial OR group. A weak temperature dependence of H-N in the allo- and gluco-acetamides and CD measurements of glucosides [1] [48] [49] suggest such H-bonds.

 8) Both anomers have been prepared by selective acetylation and methylation of GlcNMe [55].

At room temperature, the 'H-NMR spectra of β -D-26 and β -D-27 in CD₂Cl, solution and the one of β - D - 28 in D₂O solution show signals of two conformers in ratios of 60 :40, 65 : 35, and 55 :45, respectively. Whereas the signals of the major conformer are sharp, the signals of the minor conformers are broad. This phenomenon has already been observed in the 'H-NMR spectrum of β -p-27 in CDCI₁ solution [51] [52]. Some 'H- and ¹³C-NMR signals of the minor isomers are not visible. This suggests two equilibria of three conformers with one coalescence temperature above and the other close to room temperature. **If** one excludes the unfavorable *(E)-syn* -conformer and considers that coalescence due to (E)/(Z)-isomerization of amides occurs at temperatures of 50-70" *[56],* one has to conclude that the broad signals are due to the equilibrating *(Z)-anti-* and (Z)-syn -conformers, and the sharp signals to the (E) -anti-conformer. Indeed, sharper 'H-NMR signals are recorded for the minor conformers of β -D-26 and β -D-27 at 50° in CDCI, solution. The ¹H-NMR spectrum of β -D-28 at 85° in D₂O shows only sharp signal of two conformers. The position of the equilibria at 50 and 85°, respectively $(\beta -D-26: 60:40; \beta -D-27: 70:30;$ β -D-28: 50: 50), differ only slightly from those at room temperature. At -50° , mixtures of the *(E)-anti-,* the (Z)-anti-, and the *(Z)-syn* -conformers were observed for solutions in CD₂Cl, of β -D-26 and β -D-27 and for β -D-28 (CD₃OD) in the same ratio 60:30:10.

The assignment of the conformers is based on the characteristic chemical-shift values, with H-C(2) of the (E) -anti- and the (Z) -syn-conformers resonating at high field, and $H-C(2)$ of the (Z) -*anti*- and $H-C(1)$ of the (Z) -*syn*-conformers resonating at low field *(Table* 6). The same relative chemical-shift values are observed for H-C(l) of the (Z) -anti- *vs.* the (E) -anti-conformers (deshielding by 0.07-0.15 ppm) in 26-28. Simi-

	ин коот тетренише									
		Solvent	C(1)	C(2)	C(3)	C(4)	C(5)	C(6)	MeN	AcN
α -D-8		CDCl ₂	98.73	52.55	80.37	78.49	70.85	68.63	÷.	169.77, 23.48
α -D-26	(Z) -anti	CDCl ₃	99.76	54.92	79.19	77.28	70.66	68.70	32.44	172.25, 23.39
	(E) -anti		100.40	61.28	79.47	77.55	70.25	68.33	30.11	172.05, 22.24
α -D-27	(Z) -anti	CDCl ₂	99.56	54.45	80.09	77.55	70.40	71.09	32.40	171.96, 23.35
	(E) -anti		100.36	60.88	81.00	78.85	70.03	70.70	29.74	171.88, 22.00
α -D-28	(Z) -anti	D,O	102.18	59.90	74.96	71.53	74.20	63.82	35.31	179.29, 24.65
	(E) -anti		102.77	64.46	74.96	71.80	74.00	63.82	32.45	178.74, 24.05
β -D-8 [57]		CDCl ₃	101.3	55.6	81.5	78.3	74.4	68.8	$\overline{}$	170.5, 23.4
β -D-26	(E) -anti	CDCl ₃	100.63	63.43	79.32	78.96	74.86	68.50	27.76	172.48, 22.09
	(Z) -syn/ (Z) -anti		100.23	4)	b)	b)	74.75	68.86	a)	$171.36,$ ^a)
β -D-27	(E) -anti	CDCI,	100.50	63.12	81.61	80.28	74.61	70.89	27.83	172.69, 21.94
	(Z) -syn/ (Z) -anti		100.15	59.32	81.00	a)	a ₎	71.26	a)	171.35, 23.39
β -D-27 ^c)	(E) -anti	CD ₂ Cl ₂	100.46	63.06	81.25	80.02	74.21	70.65	28.53	172.77, 23.03
	(Z) -anti		100.46	61.64	80.44	79.77	74.47	71.10	31.53	172.43, 23.43
	(Z) -syn		100.20	a)	81.09	80.84	74.08	69.49	42.60	171.83, 23.29
β -D-28	(E) -anti	D ₂ O	102.60	66.53	73.35	73.22	78.52	63.44	30.43	178.49, 23.74
	(Z) -syn/ (Z) -anti		102.51	a)	72.92	72.92	a)	63.39	33.21^{d} , a), a)	

Table 7. Selected ¹³C-NMR Chemical-Shift Values [ppm] of 8 and the GlcNMeAc Glycosides 26-28 *at Room Temperature*

") Hidden by other signals or not visible

b, Broad signal at 79.84-79.47 **ppin.**

 $\text{ch } -80^\circ$.

^d) Broad signal.

larly, MeN of the (E) -anti-conformers of 27 and 28 is sightly shielded relative to the (Z)-anti-isomers. MeN for the (Z)-anti-conformers of α - $D-26$ (0.04 ppm, 25°) and β - $D-26$ (0.33 ppm, -50°), however, is shielded relative to the (E)-anti-conformer, presumably due to the anisotropy effect of the neighboring Ph group.

The ¹³C-NMR spectra of the GlcNMeAc α -D-glycosides show a characteristic downfield shift of 4.6–6.4 ppm $(cf. [16])$ for $C(2)$ of the (E) -*anti*-conformers as related to the corresponding (Z) -anti-conformers (Table 7). Upfield shifts were observed for MeN $(2.3-2.9 \text{ ppm})$ and for MeCO $(1.1-1.6 \text{ ppm})$ of the (E) -anti-conformers, whereas the chemical-shift values of the other C-atoms are hardly affected by the conformation $(|A\delta|)$ \leq 1 ppm). At room temperature, the ¹³C-NMR spectra (CDCl₃) of the GlcNMeAc β -D-glycosides are characterized by sharp signals for the (E) -anti-conformers (major isomers) and by broadened signals for equilibrating (Z) -anti $/(Z)$ -syn-conformers (minor isomers). Some signals are invisible due to coalescence. Unfortunately, the low-temperature ¹³C-NMR spectra (-80°) of β -D-26 (CD,Cl₂) and β -D-28 (CD,OD) are poorly resolved. The ¹³C-NMR spectrum of β -D-27 in CD₂Cl₂ solution at -80° , however, shows the presence of three conformers in the ratio of *ca.* 66 :27:7 (deduced from the intensity of the strong C=O signals). The chemical-shift values of the dominant conformer agree well with those of the (E) -anti-conformer at room temperature in CDCl₃ solution and the shift values of the two minor isomers with those of the averaged (Z) -anti- and (Z) -syn-conformers at room temperature. The largest chemical-shift differences are observed for $H-C(2)$ and MeN of the conformers of β -D-27.

6. *Conclusion.* Polar diequatorial substituents at the neighboring C-atoms of *N*acetyl-hexosamines possessing an equatorial NHAc group favor a shift of the position of the equilibrium of the *(Z)-anti-* and *(2)-syn* -conformers, so that substantial amounts of the latter conformer can be detected. Thus, β -D-GlcNAc derivatives occur as mixtures of the (Z) -anti- and (Z) -syn-conformers, evidenced by the observation that $H-C(2)$ of β -D-GlcNAc and its unprotected glycosides resonate in D₂O solution *ca*. 0.2–0.3 ppm at higher field than $H-C(2)$ of the corresponding α -D-GlcNAc derivatives [46] [47] (see also e.g., [58] [59]). As a consequence, one or the other conformer may be preferred in oligo- or polymers containing β -D-GlcNAc residues or in complexes of β -D-GlcNAc derivatives with a given enzyme. To the best of our knowledge, this aspect has not been explicitly investigated⁹). The solid-state structures of β -D-GlcNAc derivatives found in the protein database (hyaluronic acid [60], keratan sulfate [611, and substrate-enzyme complexes of β -D-GlcNAc derivatives with lysozyme [62–66], wheat germ agglutinin [67] [68], and CD59 [69]), however, prefer exclusively the (Z) -anti-conformation. NOE Measurements of glycopeptides containing β -D-GlcNAc residues indicate a low population of the *(Z)*syn-conformation in H,O in one case [70] and a substantial population of the *(Z)-syn*conformation of another glycopeptide in (D_6) DMSO [71].

We thank Ms. *Brigitte Brundenberg* for the NOE measurements, the *Royal Society European Science Exchange Programme* for a fellowship to *P. F.*, and the *Swiss National Science Foundation* and *F. Hoffmann-La Roche AG*, Basel, for generous support.

⁹) One may speculate that N-deacylases of GlcNAc-derived β -D-glycosides will attack the *(E)-* or (Z)-syn-conformer.

Experimental **Part**

General. See [39]. The following compounds were prepared according to literature procedures: α -D- and β -D-9 by thermolysis of 17 in the presence of MeOH [1], α -D-14 [32], β -D-14 [33], and α -D- and β -D-15 [34] [35] by methylation of α -D-21 [72] [73], β -D-21 [72] [74], and α -D- and β -D-23, resp., with Me₂SO₄/NaOH in CCI₄/H₂O [75], α -D- and β -D-11 [30] [76] [77] by benzylation of α -D- and β -D-23 with KOH and benzyl chloride (BnCl) in dioxane [78]. Anal. HPLC: Merck-LiChrosorb-Si60 250 x 4.6 mm cartridge: prep. HPLC: Zorbas-Sil 250 x 20 mm column. ¹H-NMR Spectra: chemical shifts in ppm rel. to SiMe₄ measured from residual CHCl₃ (δ 7.27 ppm) or CDHCl₂ (δ 5.32 ppm), or from sodium 3-(trimethylsilyl)propane-1-sulfonate (DSS; δ 0.00) as internal standard; in ambiguous cases, assignments based on selective homonuclear decoupling experiments or on ${}^{1}H,{}^{13}C$ -HSQC and ¹H,¹H-COSY spectra (α -D-8, β -D-14, and α -D-27).

Methyl 2-Acetumido-3,4,6-tri- 0-benzyl-2-deoxy-a- D-glucopyranoside (a **-u-8;** for an anomeric mixture of **8,** see [29]). A soln. of α -D-21 (0.25 g, 1.06 mmol) in DMF (7.5 ml) was treated with NaH (78 mg, 3.25 mmol), stirred at 25° for 10 min, treated with BnBr (40 μ), 3.37 mmol), stirred for further 30 min, and poured into H₂O (20 ml). The resulting precipitate was washed with H₂O (20 ml), dried, and recrystallized (AcOEt/hexane): anomerically pure α **-D-8** (0.43 g, 80%). R_f (AcOEt) 0.38. M.p. 157–160°. ¹H-NMR (CDCI₃): see [29] and *Table 1.* ¹³C-NMR (75 MHz, CDCI,): see *Table* 7; additionally, 138.50 **(s);** 138.10 (2s); 128.51-127.51 (several d); 75.01 *(t),* 74.82 *(t),* 73.49 *(t,* 3 PhCH,); 54.99 *(4,* MeO).

Methyl 2-Acetamido-3,4,6-tri-O-benzyl-2-deoxy-β-D-glucopyranoside (β-D-8) [52] [57]. As described for *α-D-8*, benzylation of β -D-21 [72] [74] (0.65 g, 2.76 mmol) gave β -D-8 (0.84 g, 60%). R_f (AcOEt) 0.38. M.p. 164-167° ([52]: 158-159°). 'H-NMR (CDCI,): see [29] [57] and *Table 1.* ',C-NMR (CDCI,): see *Table* 7.

Methyl 2-[Ace1yl(rnethyljamirzo J-3,4,6-1ri- 0-benzyl-2-deoxy-a -D-glucopyranosirle *(a* -0-26). A stirred soh. of α -D-8 (1.00 g, 1.98 mmol) in DMSO (5 ml) was treated with a soln. of dimethylsulfinyl carbanion [79] (5 ml), stirred for 3 h, treated dropwise with MeI (250 μ 1, 4.01 mmol), and stirred for further 48 h [50]. The soln. was treated with H₂O (25 ml) and extracted with CHCl₃ (3×25 ml). The org. layers were washed with H₂O (25 ml) and brine (25 ml), combined, dried (Na₂SO₄), and evaporated. FC (AcOEt/hexane 7:3) gave α -D-26 (0.47 g, 46%). Oil. R_f $(ACOE1)$ 0.55. $[\alpha]_{D}^{25}$ = +70.7 (c = 4.4, CHCl₃). IR (0.03_M, CH₂Cl₂): 3066w, 3033w, 2915m, 1644s, 1496w, 1453m, 1405~1, 1365m, **1318w,** 1280w, 1247w, 1211w, 1192w', 1128s, 1045s, 1028s, 914w,, *603w.* 'H-NMR (500 MHz, CD₂Cl₂; (Z)-anti/(E)-anti 2:1): 7.38-7.21 *(m, 15 arom. H)*; 4.86 *(d, J* = 11.9, 0.67 H, PhCH); 4.82 *(d, J* = 11.1, 0.33 H, PhCH); 4.795 (d, *J* = 11.3, 0.67 H, PhCH); 4.790 (dd, *J* = 3.5, 11.4, 0.67 H, H-C(2)); 4.73 (d, *J* = 3.5, 0.33 H), 4.64 $(d, J = 3.5, 0.67$ H, H-C(1)); 4.622 $(d, J = 11.2, PhCH)$; 4.616 $(d, J = 11.3, PhCH)$; 4.59 $(d, J = 11.1,$ 0.33 H, PhCH); 4.58 *(d, J* = 11.9, 0.67 H, PhCH); 4.54 *(d, J* = 11.2, PhCH); 4.52 *(d, J* = 12.1, 0.33 H, PhCH); 4.05(dd,J=8.3, 10.5,0.33H),4.03(dd,J=8.0, **11.4,0.67H,H-C(3));3.83(dd,J==3.6,** 10.4,0.33H,H-C(2)); 3.80-3.69 (m, H-C(4), H-C(5), 2 H-C(6)); 3.37 (s, 1 H); 3.32 (s, 2 H, MeO); 2.89 (s, 1 H), 2.85 (s, 2 H, MeN); 2.12 **(s.** ¹H), 2.02 **(s,** 2 H, Ac). I3C-NMR (75 MHz, CDCI,; (Z)-anti/(E)-anti 2:l): **see** *Table* 7; additionally for the (Z)-anti-conformer, 138.89 **(s);** 138.08 (2s); 128.45-126.83 (several d); 74.71 *(t),* 73.56 *(t),* 72.56 *(t, 3* PhCH,); 54.79 *(q,* MeO); additionally for the (E)-anti-conformer, 138.01 (s); 137.98 (s); 137.22 **(s);** 74.94 *(t),* 74.72 (f), 73.70 *(I,* 3 PhCH,); 54.93 *(4,* MeO). FAB-MS: 520.3 (100, *[A4* + 1]+), 488.2 (22, *[M* - OMe]'), 412.2 (47, $[M - OBn]^+$, 380.2 (65), 91.0 (35, C₇H₇⁺).

Methyl 2 -[Acetyl(methyl)amino]-3,4,6-tri-O-benzyl-2-deoxy- β -D-glucopyranoside (β -D-26). β -D-8 (0.40 g, 0.79 mmol) was methylated as described for α -D-26. FC (AcOEt/hexane 7:3) gave β -D-26 (0.24 g, 47%). Oil. R_f $(ACOEt/hexane 7:3)$ 0.30. $[\alpha]_{D}^{25} = +9.9$ $(c = 3.5, CHCl_3)$. IR $(0.03_M, CH_2Cl_2)$: 3060w, 3051m, 3034m, 2936m, 914w, 814w, 651w, 601w. ¹H-NMR (50°, 300 MHz, CDCl₃; (E)-anti/((Z)-anti and (Z)-syn) 3:2): 7.33-7.18 *(m,* 15 arom. H); 4.86-4.73 *(m, 2 PhCH)*; 4.67-4.54 *(m, 0.4 H–C(1), 4 PhCH)*; 4.37 *(d, J = 7.3, 0.6 H, H–C(1))*; H, MeO); 3.48-3.42 *(m.* H-C(4)); 3.04-2.84 (br. s, 1.2 H), 2.75 **(s,** 1.8 H, MeN); 2.16 **(s,** 1.8 H), 1.96 (s, 1.2 H, Ac). 1 H-NMR (-50°, 300 MHz, CD₂Cl₂; (*E*)-anti/(*Z*)-anti/(*Z*)-syn 6:3:1): 7.37-7.20 (m, 15 arom. H); 5.15 (d, *J* = 8.0, 0.1 H, H-C(1)); 4.84-4.72 $(m, 2 \text{ PhCH})$, 4.62-4.48 $(m, 0.3 \text{ H}-\text{C}(2)$, 4 PhCH); 4.35 $(d, J = 7.8, 0.6 \text{ H})$, 4.21 $(d, J = 7.8, 0.6 \text{ H})$ *J* = 8.9, 0.3 H, H-C(1)); 3.80-3.66 *(m, H-C(3), H-C(5), 2 H-C(6)*; 3.61-3.42 *(m, 0.7 H-C(2), H-C(4)*); 3.45 (s, 1.8 H), 3.40 (s, 1.2 H, MeO); 2.99 (s, 0.3 H), 2.62 (s, 1.8 H), 2.29 (s, 0.9 H, MeN); 2.08 (s, 1.8 H), 1.92 (s, 0.9 H), 1.89 $(s, 0.3 \text{ H, Ac})$. ¹³C-NMR (75 MHz, CDCl₃; (E)-anti/((Z)-anti and (Z)-syn) 2:1): see *Table 7*; additionally for the (E)-anti-conformer, 137.93 (s); 137.87 (s); 137.57 (s); 128.54-127.61 (several d); 75.16 (t, PhCH₂); 75.05 (t, PhCH₂); 73.64 (t, PhCH₂); 57.11 (q, MeO); additionally for the (Z)-anti- and (Z)-syn-conformers, 138.67 (s); 138.24 (s); 74.75 *(I,* PhCH,); 73.48 *(t,* PhCH2). FAB-MS: 520.3 (34, *[M* + I]+), 488.2 (100, *[M* - OMe]'), 412.2 $(35, [M - OBn]^+), 91.0 (56, C₇H₇⁺).$ 2870m, 1646s, 1496m, 1454m, 1408m, 1383m, 1359m, 1312w, 1279w, 1245w, 1216m, 1190w, 1113s, 1055s, 1028s, 3.79-3.67 *(nt,* 0.4 H-C(2), H-C(3), H-C(5), 2 H-C(6)); 3.67-3.51 *(VZ,* 0.6 H, H-C(2)); 3.49 **(s,** 1.8 H), 3.47 **(s,** 1.2

Methyl *2-[Acetyl(methyl)aminoJ-2-deoxy-3,4,6-tri-* 0-methyl-a -D-ghcopyranoside *(a* **-0-27)** *[5* I]. *a* **-~-14** (0.20 g, 0.72 mmol) was methylated as described for α **-D-26**. FC (AcOEt/MeOH 19:1) and HPLC (AcOEt/MeOH/ hexane 19:1:24.4) gave α-D-27 (0.13 g, 60%). Oil. Anal. HPLC (hexane/AcOEt/MeOH 20:19:1, 2 ml/min): *t*_R 5.9 min. R_f (AcOEt/MeOH 19:1) 0.37. ¹H-NMR (500 MHz, CD₂Cl₂; (Z)-anti/(E)-anti 7:3): 4.64 *(d, J* = 3.2, 0.3 H), 4.56(d, J = 3.5, 0.7 H, H-C(1)); 4.54(dd, J = 3.5, 11.2, 0.7 H, H-C(2)); 3.68(dd, J = 8.5, 11.2, 0.7 H), 3.67(br. *t*, $J \approx 9.0, 0.3$ H, H-C(3)); 3.61 (dd, $J = 2.9, 11.3, 0.3$ H, H-C(2)); 3.60-3.52 (m, H-C(5), 2 H-C(6)); 3.52 (s, 0.9 H), 3.51 **(s,** 3H), 3.49 **(s,** 2.1 H), 3.38 (s, 2.1 H), 3.37(s, 0.9 H), 3.33 (s, 0.9 H), 3.29 (s,2.1 H,4MeO); 3.28 *(dd,J* = 8.1, 10.6, 0.7 H), 3.26 (dd, $J = 8.1, 10.6, 0.3$ H, $H - C(4)$); 2.97 (s, 2.1 H), 2.90 (s, 0.9 H, MeN); 2.08 (s, 2.1 H); 2.07 (s, 0.9 H, Ac). 'H-NMR (300 MHz, CDCI,; (Z)-anti/(E)-anti 58 :42): similar to **[51],** except H-C(2) of the (E)-anticonformer at 3.68-3.38 ppm. ¹³C-NMR (75 MHz, CDCl₃; (Z)-anti/(E)-anti 7:3): see Table 7; additionally for the (Z) -anti-conformer, 60.10, 59.13, 57.51, 54.78 (4q, 4 MeO); additionally for the (E) -anti-conformer, 60.33, 60.10, 59.13, 54.97 (4q, 4 MeO).

Methyl *2-/Acetyl(methyl)amino]-2-deoxy-3,4,6-tri-* 0-methyl\$ -D-glucopyranoside (0 -0-27) *[5* 1-53]. 8 -a- **¹⁴** (0.20 g, 0.72 mmol) was methylated as described for *a* **-0-26.** FC (AcOEt/MeOH 19: I) and HPLC (hexane/AcOEt/ MeOH 20:19:1) gave β -D-27 (70 mg, 33%). Oil. Anal. HPLC (hexane/AcOEt/MeOH 20:19:1, 2 ml/min): t_R 8.3 min. R_f(AcOEt) 0.25. ¹H-NMR (50°, 300 MHz, CDCl₃; (E)-anti/((Z)-anti and (Z)-syn) 7:3): 5.11-4.87 (br. *s*, 0.3 H), 4.32 *(d, J* = 8.1, 0.7 H, H-C(1)); 4.25-3.98 (br. s, 0.3 H, H-C(2)); 3.68-3.58 (m, 0.3 H-C(3), 2 H-C(6)); 3.55-3.50 (m, 0.7 H, H-C(3)); 3.55 **(s,** 2.1 H), 3.52 **(s,** 0.9 H), 3.50 (s, 3 H), 3.47 (s, 2.1 H), 3.45 (s, 0.9 H), 3.43 (3, 2.1 H), 3.41 (s, 0.9 H, 4 MeO); 3.40-3.27 (m. 0.7 H-C(2), 0.7 H-C(4), H-C(5)); 3.16 (br. *t, J* =9.3, 0.3 H, H-C(4)); 3.05 (s, 0.9 H), 2.86 **(s,** 2.1 H, MeN); 2.13 (s, 2.1 H), 2.09 (s, 0.9 H, Ac). 'H-NMR *(-50°,* 300 MHz, CD2C12; *(E)-anti/(Z)-anti/(Z)-syn* 6:3:1): 5.06 *(d, J* = 8.4,O.l H, H-C(1)); 4.44 *(d, J* = 8.5, 10.3,0.3 H, H-C(2)); 4.29 *(d, J* = 7.9, 0.6 H), 4.21 *(d, J* = 8.7, 0.3 H, H-C(1)); 4.14 *(dd, J* = 9.0, 10.4, 0.1 H, H-C(3)); 3.59-3.51 (m, 2 H-C(6)); 3.50-3.46 (m, 0.9 H, H-C(3)); 3.47 (s, 1.8 H), 3.46 **(s,** 0.9 H), 3.44 (s, 1.8 H), 3.43 **(s,** 0.9 H), 3.42 **(s,** 1.2 H), 3.41 **(s,** 1.8 H), 3.39 **(s,** 0.9 H), 3.36 (s, 0.3 H), 3.34 (s, 2.1 H), 3.32 (s, 0.3 H, 4 MeO); 3.36-3.23 (m, 0.7 H-C(2), H-C(4), H-C(5)); 3.02 **(s,** 0.3 H), 2.84 **(s.** 0.9 **H),** 2.76 **(s,** 1.8 H, MeN); 2.06 (s, 0.3 H), 2.03 **(s,** 2.7 H, Ac). ¹³C-NMR (75 MHz, CDCI₃; (E)-anti/((Z)-anti and (Z)-syn) 7:3): see Table 7; additionally for the (E)-anti-conformer, 60.64, 60.46, 59.32, 57.09 (4q, 4 MeO); additionally for the (Z) -anti- and the (Z) -syn-conformers, 60.20 *(q),* 56.80 (br. *q,* 2 MeO). "C-NMR (-SO", 75 MHz, CD2C12; *(E)-anti/(Z)-anti/(Z)-syn* 6:3:1): see Table 7; additionally for the (E) -anti-conformer, 61.56, 61.14, 59.57, 57.71 (4q, 4 MeO); additionally for the (Z) -anti-conformer, 61.21, 59.52, 57.71, 56.10 *(4q, 4* MeO); additionally for the (Z)-syn-conformer, 60.36, 60.30, 57.66, 57.60 (4q, 4 MeO).

Methyl 2-[Acetyl(methyl)amino]-2-deoxy-a-D-glucopyranoside (a-D-28) [55]. A stirred soln. of a-D-26 (225 mg, 0.43 mmol) in EtOH (3.75 ml) and cyclohexene (1.90 ml) was treated with 20% Pd(OH),/C (60 mg) and kept under reflux and N_2 for 6 h [54]. Filtration through *Celite* and evaporation fo the filtrate gave α -D-28 (87 mg, 91 %). Oil. *R,-* (AcOEt/MeOH 4:l) 0.30. 'H-NMR (D,O, 500 MHz; (Z)-anti/(E)-anti **3:l):** 4.89 *(d, ^J*= 3.4, 0.25H),4.74(d,J = **3.5,0.75H,H-C(1));4.39(dd.J=** 3.5, 11.3,0.75 H,H-C(2));4.08(dd.J = 8.6, 10.7,0.25H), 4.02(dd,J =8.6, 11.3,0.75 H,H-C(3)); 3.89 (dd,J=2.3, 12.2,0.25 H), *3.88(dd,J* =2.3, 12.3,0.75H, H-C(6)); 3.82 *(dd, J* = 3.4, 10.7, 0.25 H, H-C(2)); 3.78 *(dd, J* = 5.4, 12.3, H'-C(6)); 3.71 *(ddd, J* = 2.3, 5.5, 10.1, 0.25 H), 3.69 *(ddd, J* = 2.3, 5.4, 10.0, 0.75 H, H-C(5)); 3.52 *(dd, J* = 8.6, 10.0, 0.25 H), 3.50 *(dd, J* = 8.6, 10.0, 0.75 H, H-C(4)); 3.39 **(s,** 0.75 H), 3.36 (s, 2.25 H, MeO); 3.08 **(s,** 2.25 H), 2.94 **(s,** 0.75 H, MeN); 2.17 (s, 0.75 H), 2.16 **(s,** 2.25 H, Ac). ¹³C-NMR (50 MHz, D₂O; (Z)-anti/(E)-anti 3:1): see *Table 7*; additionally, 58.22 (q, MeO).

Methyl 2-[Acetyl(methyl)amino]-2-deoxy-β-D-glucopyranoside (β-D-28) [55]. β-D-26 (82 mg, 0.16 mmol) was debenzylated as described for α -D-26 to afford β -D-28 (33 mg, 83%). Oil. R_f (AcOEt/MeOH 4:1) 0.25. ¹H-NMR *@So,* 200 MHz, D20; (E)-anti/((Z)-anri and *(Z)-syn)* 1:l): 4.75 *(a', J* = 8.8, 0.5 H), 4.69 *(d, J* = 8.2, 0.5 H, H-C(1)); 4.124.02 (br. **s,** 0.5 H, H-C(2)); 3.96-3.71 *(m.* H-C(3), H-C(4), H-C(5), 2 H-C(6)); 3.63-3.51 *(m, 0.5* H, H-C(2)); 3.53 **(s, 1.5** H), *3.50* (s, 1.5 H, MeO); 3.03 **(s,** 1.5 H), 2.87 **(s,** 1.5 H, MeN); 2.15 (s, Ac). 'H-NMR *(-SO0,* 300 MHz, CD,OD; *(E)-anti/(Z)-anti/(Z)-syn* 6:3:1): 5.17 *(d, J* = 8.7,O.l H), 4.59 *(d, J* = 8.2, 0.6 H), 4.52 $(d, J=8.1, 0.3 H, H-C(1))$; 4.41 (br. t, $J=9.1, 0.3 H, H-C(2))$; 3.88 (br. d, $J=11.8, H-C(6)$); 3.75-3.65 (m, H-C(3), H'-C(6)); 3.50 (s, 1.8 H, MeO); 3.48-3.31 (m. 0.7 H-C(2), H-C(4), H-C(5)); 3.46 (s, 0.9 H), 3.45 (s, 0.3 H, MeO); 3.10(s, 0.3 H), 2.98(s, 0.9 H), 2.86(s, 1.8 H, MeN); 2.13(s, 0.9 H), 2.12(s, 1.8 H), 2.10(s, 0.3 H, Ac). ¹³C-NMR (75 MHz, D₂O; (E)-anti/((Z)-anti and (Z)-syn) 3:1): see Table 7; additionally for the (E)-anti-conformer, 59.93 *(q,* MeO); additionally for the (Z)-anti- and (Z)-syn-conformers, 59.47 *(q,* MeO).

REFERENCES

- [I] A. Vasella, C. Witzig, *Helv. Chim. Actu* 1995, 78, 1971.
- 121 A. S. Cerezo, Chem. *Ind. (London)* 1971,96.
- [3] V.F. Bystrov, *Prog. Nucl. Magn. Reson. Speetrosc.* 1976, *11,* 41.
- [4] S. Hirano, Agric. Biol. Chem. 1972, 36, 1071.
- [5] T.J. Schamper, *Carbohydr. Res.* 1974, 36, 233.
- [6] A. **S.** Cerezo, *An. Asoc. Quim. Argent.* 1976,64, 351.
- [7] S. Hirano, H. Iwaki, Y. Kondo, *Carhohydr. Res.* 1978,65, 307.
- [8] C.A. Bush, A. Duben, S. Ralpati, *Biochemistry* 1980, *19,* 501; C.A. Bush, K. Blumberg, J. N. Brown, Biopolymers 1982, 21, 1971.
- *[9]* M. K. Cowman, D. Cozart, K. Nakanishi, E. A. Balazs, *Arch. Biochem. Biophys.* 1984, 230, *203.*
- [lo] A. E. Salinas, J. F. Sproviero, V. Deulofeu, *Curhohydr. Res.* 1987,170, 71.
- [ll] R. Babiano. C. Durin, **J.** Plumet, E. Romin, E. Sanchez, **J.A.** Serrano, J. Fuentes, *J. Chem.* Soc., *Perkin Truns. 1* 1989, 1923; M. Avalos, R. Babiano, P. Cintas, J.L. Jimenez, J. **C.** Palacios, J. Fuentes, *ibid.* 1990,495.
- [12] M. Avalos, R. Babiano, P. Cintas, J. L. Jiménez, J. C. Palacios, C. Valencia, *Tetrahedron* 1993, 49, 2655.
- [I31 **I.** Wawer, B. Piekarska-Bartoszewicz, A. Temeriusz, *Carbohydr. Res.* 1995,267, 167.
- [14] Z. Stein, I. Goldberg, *Acta Crystallogr., Sect. C* 1992, 48, 1506.
- [I51 A.K. Saksena, R.G. Lovey, V.M. Girijavallabhan, A.K. Ganguly, A.T. McPhail, *J. Org. Chem.* 1986, 51, 5024.
- [16] M. Avalos, R. Babiano, C. J. Durán, J. L. Jiménez, J. C. Palacios, *J. Chem. Soc., Perkin Trans. 2* 1992, 2205.
- [I71 D. G. Streefkerk, M. J. A. de Bie, J. F.G. Vliegenthart, *Curhohydr. Res.* 1974, *33,* 339.
- [I81 L. Kenne, P. Unger, T. Wehler, *J. Chem.* **Soc.,** *Perkin Trans. I* 1988, 1183.
- [19] C. Ortiz Mellet, A. Moreno Marin, J.M. Garcia Fernandez, **J.** Fuentes, *Tetruhedran: Asymmetry* 1994, *5,* 2313.
- [20] F. Mohamadi, N.G. **J.** Richards, W. C. Guida, R. Liskamp, **C.** Caufield, M. Lipton, G. Chang, T. Hendrick son, W. C. Still, *J. Comput. Chem.* 1990, 11,440.
- [21] K. Briner, B. Bernet, J.-L. Maloisel, A. Vasella, *Heiv. Chim.* Actu 1994, 77, 1969.
- *[22]* M. R. Pincus, **A. W.** Burgess, H. A. Scheraga, Biopolymers 1976, 15, 2485.
- [23] J. S. Yadav, G. Barnickel, H. Bradaczek, H. Labischinski, *J. Theor. Biol.* 1982, **Y5,** 285.
- [24] J. **S.** Yadav, G. Barnickel, H. Bradaczek, H. Labischinski, *J. Theor. Bid.* 1981, 88, 441; *ibid.* 1982, Y5, 167; *hid.* 1982, *95,* 151.
- [25] R. L. Augustine, L. A. Vag, J. *Org.* Chem. 1975,40. 1074; C. F. Hammer, S. Chandrasegaran, *J. Am. Chem. Soe.* 1984,106, 1543.
- 1261 3.-L. Maloisel, A. Vasella, *Helv. Chim. Aciu* 1992, 75, 1491.
- [27] K. Araki, **M.** Kawa, Y. Saito, **H.** Hashimoto, J. Yoshimura, *Bull. Chem. Soc. Jpn.* 1986,5Y, 3137; K. Araki, K. Miyazawa, H. Hashimoto, J. Yoshimura, *Tetrahedron Lett.* 1982, *23,* 1705.
- [28] M. Shiozaki, **Y.** Kobayashi, N. Ishida, M. Arai, T. Hiraoka. *Carhohydr. Res.* 1991,222, 57.
- [29] A. Vasella, C. Witzig, C. Waldraff. P. Uhlmann, K. Briner, B. Bernet, L. Panza, R. Husi, *Helv. Chim. Aeta* 1993, 76, 2847.
- [30] K. Briner, A. Vasella, *Helv. Chim. Acta* **1992**, 75, 621.
- [3l] K. Briner, A. Vasella, *Heh. Chim. Acta* 1990, 73, 1764.
- [32] W. L. Salo, H. G. Fletcher, Jr., *J. Org. Chem.* **1969,** 34, 3026.
- [33] R. Kuhn, H. Trischmann, *Chem. Ber.* 1963, 96, 284.
- 1341 E. L. Hirst, E. Percival, *Methods Carbohydr. Ch~m.* 1963, *2,* 145.
- 1351 J. Haverkamp, M. J. A. de Bie, J. F.G. Vliegenthart, *Carbohydr. Res.* 1975,3Y, 201,
- [36] C. Reichardt, 'Solvents and Solvent Effects in Organic Chemistry', VCH Verlagsgesellschaft, Weinheim, 1988. p. 339.
- [37] R. **U.** Lemieuw, **J.** D. Stevens, *Can. J. Chcm.* 1966, 44, 249.
- [38] A. Linden, A. Vasella, C. Witzig, *Helv. Chim. Acta* 1992, 75, 1572.
- [39] A. Vasella, C. Witzig, R. Husi, *Helv. Chh. Acta* 1991, 74, 1362.
- [40] K. Briner, A. Vasella, *Heiv. Chirn. Actu* 1989, 72, 1371.
- 1411 P.M. Collins. N. N. Oparaeche, *Curhohydr. Res.* 1974,33. 35.
- [42] S. Brimacombe, *Methods Carbohydr. Chem.* **1972**, 6, 377.
- 1431 **A.** A. Ribeiro, M. Goodman, F. Naider, *Int. J. Pept. Protein Res.* 1979, *14,* 414.
- [44] E. S. Stevens, N. Sugawara, G. M. Bonara, C. Toniolo, *J. Am. Chem.* Soc. 1980, *102,* 7048.
- [45] S.H. Gellman, G.P. Dado, G.-B. Liang, B. R. Adams, *J.Am. Chem. Soc.* 1991, 113, 1164; S.H. Gellman, B. R. Adams, G.P. Dado, *ibid.* 1990, 112,460.
- [46] S. J. Perkins, L.N. Johnson, D. C. Phillips, R. A. Dwek, *Curbohydr. Res.* 1977,59, 19.
- [47] K. Bock, S. Ogawa, M. Orihara, *Curbohydr. Res.* 1989, 191, 357.
- [48] L. A. Bufington, D. W. Blackburn, C. L. Hamilton, T. C. Jarvis, J. J. Knowles, **P.** A. Lodwick, L. M. McAlli ster, D. J. Neidhart, J. L. Serumgard, *J. Am. Chem.* Soc. 1989, *Ill,* 2451.
- [49] H. R. Dickinson, P. L. Coduti, C. A. Bush, *Curbohydr. Res.* 1977,56,249.
- [50] S. Hakomori, J. *Biochem. (Tokyo)* 1964,55,205.
- **[51]** J.A. Bennek, M. J. Rice, G. R. Gray, *Curbohydr. Res.* 1986,157, 125.
- [52] J.-C. Jacquinet, P. Sinay, *Curbohydr. Res.* 1974,32, 101.
- [53] U. Kraska, J.-R. Pougny, P. Sinay, *Curbohydr. Res.* 1976,50, **181.**
- [54] S. Hanessian, T. J. Liak, B. Vanasse, *Synthesis* 1981,396.
- [55] T. Tai, K. Ydmashita, A. Kobata, *J. Biochem. (Tokyo)* 1975, 78,679.
- 1561 W. E. Stewart, I.T. **H.** Siddall, *Chem. Rev.* 1970, 70, 517.
- [57] D. Lafont, G. Descotes, *Curbohydr. Res.* 1988,175, 35.
- [58] Y. A. Knirel, N. **A.** Paramonov, E. V. Vinogradov, N. K. Kochetkov, Z. Sidorczyk, K. Zych, *Curbohydr. Res.* 1994, 259, C1.
- [59] L. Szilagyi, P. Forgo, *Curbohydr. Res.* 1993,247, 129.
- [60] W. T. Winter, **S.** Arnott, *J. Mol. Biol.* 1977, 117, 761; W.T. Winter, P. J.C. Smith, S. Arnott, *ibid.* 1975, 99, 219; J. M. Guss, D. W. L. Hukins, P. J.C. Smith, W. T. Winter, **S.** Arnott, R. Moorhouse, D. A. Rees, *ibid.* 1975,95, 359.
- [61] S. Arnott, J. M. Guss, D. W. L. Hukins, I. C.M. Dea, D.A. Rees, *J. Moi. Biol.* 1974,88, 175.
- [62] T. Yaniada, H. Song, K. Inaka, Y. Simada, M. Kikuchi, M. Matsushima, *J. Biol. Chem.* 1995, 270, 5687.
- [63] A. T. Hadfield, D. J. Harvey, D. B. Archer, D. **A.** Mackenzie, D. 5. Jeenes, **S.** E. Radford, G. Lowe, C. M. Dobson, L.N. Johnson, J. Mol. *Biol.* 1994,243,856.
- [64] R. Kuroki, L. H. Weaver, B. W. Matthews, *Science* 1993,262,2030.
- [65] J.C. Cheetham, P.J. Artymiuk, D.C. Phillips, *J. Mol. Biol.* 1992, 224, 613; J.A. Kelly, A.R. Sielecki, B.D. Sykes, M.N. G. James, D. C. Phillips, *Nature (London)* 1979, 282, 875; L.O. Ford, L.N. Johnson, **P.** A. Machin, D. C. Phillips, R. Tijan, *J. Mol. Biol.* 1974,88, 349.
- [66] T. Imoto, L.N. Johnson, A.C.T. North, D.C. Phillips, J.A. Rupley, in 'The Enzymes', Ed. P.D. Boy, Academic Press, New York, 1972, Vol. 7, pp. 707-716.
- [67] Y. Bourne, A. Ayouba, P. Rouge, C. Cambillau, *J. Biol. Chem.* 1994,269,9429.
- [68] C.S. Wright, J. *Mol. Bid.* 1990,215, 635; C.S. Wright, *ibid.* 1984, 178, 91.
- [69] M. Fletcher, R.A. Harrison, P.J. Lachmann, D. Neuhaus, *Structure* 1994, 2, 185.
- [70] J. T. Davis, S. Hirani, C. Bartlett, B. R. Reid, *J. Biol. Chem.* **1994,** 269, 3331.
- [71] H. Kessler, H. Matter, G. Gemmecker, A. Kling, M. Kottenhahn, *J. Am. Chem. SOC.* 1991,113,7550.
- [72] R. Kuhn, F. Zilliken, A. Gauhe, *Chern. Ber.* 1953,86, 466.
- [73] R. A. Galemmo, Jr., D. Horton, *Curbohydr. Res.* 1983, 119, 231.
- [74] J. Conchie, G. A. Levvy, *Methods Carbohydr. Chem.* **1963**, 2, 332.
- [75] T. White, J. *Chem.* Soc. 1940, 428.
- [76] S.N. Dhawan, T. L. Chick, W. J. Goux, *Curbohydr. Res.* 1988,172,297.
- [77] T. Iwashige, H. Saeki, *Chem. Phurm. Bull.* 1967, 15, 1803.
- [78] C. P. J. Glaudemans, **H.** G. Fletcher, Jr., *Methods Curbohydr. Chem.* 1972,6, 373.
- [79] E.J. Corey, M. Chaykovsky, *J. Am. Chem. Soc.* 1962, 84, 866.